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Abstract—A simple isoparametric finite element formulation based on a higher-order displacement
model for flexure analysis of multilayer symmetric sandwich plates is presented. The assumed
displacement model accounts for non-linear variation of inplane displacements and constant vari-
ation of transverse displacement through the plate thickness. Further, the present formulation does
not require the fictitious shear correction coefficient(s) generally associated with the first-order shear
deformable theories. Two sandwich plate theories are developed ; one, in which the free shear stress
conditions on the top and bottom bounding planes are imposed and another, in which such
conditions are not imposed. The validity of the present development(s) is established through,
aumerical evaluations for deflections/stresses/stress-resultants and their comparisons with the avail-
able three-dimensional analyses/closed-form/other finite element solutions. Comparison of results
from thin plate. Mindlin and present analyses with the exact three-dimensional analyses yiclds some
important conclusions regarding the effects of the assumptions made in the CPT and Mindlin type
theories. The comparative study further establishes the necessity of a higher-order shear deformable
theory incorporating warping of the cross-section particularly for sandwich plates.

1. INTRODUCTION

A multilayer sandwich plate is a special form of advanced fibre-reinforced composite
Iaminate. The literature available in the ficld of laminated composite plates is enormous
and the relevant availuble literature concerning bending stress analysis has been published
recently (Kant and Pandya, 1987). We examine here the available literature specifically
relevant to the bending problems of sandwich plates.

Reissner (1948) formulated the small deflection theory for the bending of isotropic
sandwich type structures. Since this initial publication, a number of papers have been
published on various aspects of sandwich bending theory. Kao (1965) developed the govern-
ing differential equations for the non-rotationally symmetrical bending of isotropic circular
sundwich plates by means of a variational theorem. The governing equations for an ortho-
tropic clamped sandwich plate are derived using the variational principle of minimum
potential energy by Folie (1970). The most important contributions were from Srinivas and
Rao (1970) and Pagano (1970), who presented exact three-dimensional elasticity solutions
for laminated composite/sundwich plates. Whitney (1972) presented a theory analogous to
Mindlin's (1951) first-order shear deformation theory for stress analysis of laminated
composite/sandwich plates. Later, Lo ¢r af. (1977), Murthy (1981), Reddy (1984) and
Murty (1985) presented analytical solutions for laminated plate problems using higher-
order theories. These theories include warping of the transverse cross-sections. However,
they have not presented sandwich plate problems where the effect of warping of the cross-
section is predominant. Thesc analytical solutions are limited to a few simple gecometrics,
loading and boundary conditions. This limitation is overcome by adopting the finite element
method as a gencralized numerical solution technique for practical laminated/sandwich
plate problems.

Monforton and Schmit (1969) presented displacement based finite element solutions
for sandwich plates using 16 degrees of freedom, 4 noded rectangular clements. Martin
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(1967) adopted 9 degrees of freedom, 3 noded triangular elements with assumed dis-
placement fields. Cook (1972) developed a 12 degrees of freedom, 4 noded general quadri-
lateral element including transverse shear deformation. Finite element solutions for multi-
layer sandwich plates have also been presented by Khatua and Cheung (1972, 1973) using
triangular and rectangular plate bending elements. Their formulation considered the ideal
type of sandwich construction in which the core layers contribute only to the shear rigidity
of the plate. Fazio and Ha (1974) presented finite element solutions by explicit derivation
of stiffness matrices for bending and membrane actions of a rectangular three layer sandwich
plate element using the assumed stress distribution approach. Mawenya and Davies (1974)
presented a general formulation for an 8 noded quadratic, isoparametric, multilayer plate
bending element which permits the layers to deform locally and incorporates the effects of
transverse shear deformation in each layer. Hinton et al. (1975), Reddy and Chao (1981)
and Putcha and Reddy (1984) adopted assumed displacement. penalty function and mixed
methods, respectively, to develop the finite element formulations. Kant and Sahani (1985)
presented a displacement based finite element formulation using a 9 noded Lagrangian/
Heterosis element. These formulations were based on a first-order shear deformable theory
(FOST) which is based on the assumption of the constant shear strain distribution through
the laminate thickness and requires the use of shear correction coeflicients. Recently, Phan
and Reddy (1985), Putcha and Reddy (1986) and Ren and Hinton (1986) presented various
finite element formulations of a higher-order theory for laminated plates. However, they
have not applied it to sandwich plate problems.

The motivation for the present development comes from the work of Kant (1982) and
Kant ef al. (1982), which was limited to thick isotropic plates. Pandya and Kant (1987,
19884 -¢) and Kant and Pandya (1988a.b) extended these developments for orthotropic and
laminated composite/sandwich plates, This paper specifically deals with the development
and application of a C' isoparametric finite element for bending analysis of multiluyer
symmetric sandwich plites by assuming a higher-order displacement model hitherto not
considered. The theory leads to a realistic (parabolic) variation of transverse shear stresses
through the plate thickness. It is applicable to un n-layered sandwich plate with [(n+ 1)/2]
stiff layers and [(n — 1)/2] alternating weak cores. The 9 noded Lagrangian quadratic element
developed has § degrees of freedom per node.,

2. THEORY

The present higher-order shear deformation theory for symmetric sundwich/laminated
plates has been developed by assuming the displacement ficld in the following form:

u(x, y,2) = z0.(x, )+ 0% x, »)
r(x, 31,2) = z0,(x, ) +2700(x, »)

w(x, ¥, 2) = wy(x, ) H

in which w, represents the transverse displacement of the midplane and 0., 0, are the
rotations of normals to the midplanc about the p- and x-axes, respectively, as shown in
Fig. 1. The parumeters 8% 07 are the higher-order terms accounting for the flexural mode
of deformation in the Taylor series expansion and arc also defined at the midplane. The
conditions that the transverse shear stresses vanish on the top and bottom faces of the plate
are equivalent to the requircment that the corresponding strains be zero on these surfaces.
The transverse shear strains are given by

¢ %y e
cr ow s Oy

Ty = = 0,4+ 370+ —

iy (7: “_} }. ¥ ¥ (:})
e dw My
Ju dwn ; oy

Te=3+ 30 =0+370%+ - )
€z ox

Equating y,.(x, ¥, £#/2) and y..(x, y. £#/2) to zero, we obtain
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Typical tamina
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Fig. {. Laminate geometry with positive set of lamina/laminate reference axcs, displacement com-
ponents and fibre orientation.
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Murthy (1981) and more recently Reddy (1984) used conditions (3) to eliminate 0¥ and 0}
from the displacement ficld, which contains additional inplane degrees of frecdom (uy, vy).
In the present theory, we proceed with the displacement ficld given by eqns (1) and
conditions (3) arc introduced later in the shear rigidity matrix.

By substitution of eqns (1) in the strain displacement equations of the classical theory
of elasticity, the following relationships are obtained :

| !
sr | 7.()! ZX."*'-"-'SX; | zX.x,v"'Z]x:y
&\ V| = |20t S+ @
& : Ze: 0 : ¢x+:z¢:

in which

[ = [00, 00, 20, N 20,
XU x,v‘ L,.- - _ax + ay ’ ay ax

a0* 20* o0 o0
L m] F..._‘ el R 4
[x.u x.r' XJ}'] L a’r M ay M a y + a_r]

[ ow aw
(6, $2 7] = 5;+05‘y—+ 0,.302, 30;]. )

The material constitutive relations for the Lth layer can be written as
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o |- »Cll Ci: 0 1“(e: )"
6:¢p =[Ciz2 Czz 0 &2
Ti2 L 0 0 Ci; 712

-5 ST
Tis L 0 Css Vi3

where (6.0, 7. T21 Ty3) are the stress and (g, £5. 713, 23, 713) the linear strain components
referred to the lamina coordinate axes (1, 2, 3) as shown in Fig. | and C,’s the reduced

material stiffnesses of the Lth lamina and the following relations hold between these and
the engineering elastic constants:

El VpE-; E.
C = Cia=—= = - gy = ——
a L—v vy, . I —v,avy Cz I —vyvy
Ci3=Gi Cuu=0Gun Cs5=0G, 0]

The stress—strain relation for the Lth lamina in the laminate coordinate axes (x, y, =) are
written as

o )" [Qu Q. Qul (&)t
a0 =@ Q@ QOun &,
tn’ *QI} QI‘\ Q,U y‘v

7. 1" _ ‘QM 04 - Yy A
{r‘:} - LQss st] {V.r:} (8)

in which

a— t
6=1{6.0,7,7,.7T:}
and

&= {En £_y~ ‘y_\'y' Yy:- }',r:}' (9)

are the stress and linear strain vectors with reference to the laminate axes and Q,'s are the
transformed reduced elastic coefficients in the plate (Jaminate) axes of the Lth lamina. The
transformation of the stresses/strains between the lumina and the laminate coordinate
systems follows the usual transformation rule given in Jones (1975).

The total potential encrgy = of the plate is given by

1
n=;j z'adV—J.é’FdA (10)
14 A

in which A is the mid-surface arca of the plate, ¥ the plate volume, F the intensity of the
force vector corresponding to the degrees of freedom 6 defined as

5 = {It'o, 0.‘, 0).., 0:, 0:}'- (l l)

The expressions for the strain componcnts given by relations (4) are substituted in expression
(10). The functional given by expression (10) is then minimized while carrying out explicit
integration through the plate thickness. This leads to the following ten stress-resultants for
the n-layered laminate:
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[Q,v : ,:_4 1_;1 h_y ( Ty [l - ]d-

After integration, these relations are written in a matrix form which defines the stress-
resultant/strain relations of the laminate and is given by

(™ ] [ % ]
NI* xt
PR MESEA RS
Q 0 2] o
L] ]
~ Q J - d) J
or
@ =2 (13)
M= {M.M.M.}' x={LeLo L)
M* = {MEMAMEY D x* = {xh i)
Q = {Q\* Q)'}'; (D = {(D\'c (b,r}l
Q* = {QnON": ®* = {2, 0F} (14)
-Qlllll QIZIIJ Ql.\lll QIIIIS QII,IS QIJ}IS 7 Lt layer
Q:Z’IJ QZJ’IK Ql'.’lli QZIHS QZ!’IS
9, = Z QuH, QunHs QunHs QnH;
L= QunH, Q:H, Q1,H,
Ql'.‘H'l QZ_\H‘I
| Symmetric 0nH; |
[ QssH  QusH 0 0 Lth layer
. = ol Q.. H 0 0
L~ QssH*  QusH* (15)
| Symmetric Q.. H*
where

I .
H = "l:(hll._hll,«l)v i=1,3.57

4 W
H= (H,—H,I—IE.), H* = (H,_H, ':T)

The shear rigidity matrix 2, given by eqn (15) is evolved by incorporating an alternate
form of conditions (3), namely
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h
®,+ 5O =0

.

h
o, + Zd)_‘::O (16)

in it and the resulting theory, higher-order shear deformation theory satisfying zero trans-
verse shear conditions on top and bottom bounding planes of the plate (HOST!), becomes
consistent in the sense that it satisfies zero transverse shear stress conditions on the top
and bottom boundary planes of the plate. If the conditions, given by eqns (16), are not
incorporated, the resulting non-consistent theory, higher-order shear deformation theory
without satisfying above referred zero transverse shear conditions (HOST2), does not
satisfy the zero transverse shear stress conditions on the top and bottom boundary planes
of the plate. In this case the shear rigidity matrix &} is defined as

Q«H, Qi H, QssHy Q.H, Lthlayer

n QJJ”I QJSHJ QJJ}IJ
7= ,gl QssHs  QuH, (17
Symmetric Q..
The transverse shear stresses t, and tf, are not evaluated from eqn (8) as the continuity

conditions at the interfaces of the face sheet and the core are not satisticd. For this reason
the interlaminar shear (¢4, t5) between layer (L) and layer (L+1) at z = h, are obtained
by integrating the cquilibrium equations of clasticity for cach layer over the lamina thickness
and summing over layers L through 2 as follows

h

Lo foet Ot
2 _ W -
Telean, = Z ﬁ | (0‘ + Ay )d-
—}: J (0}' 0Y>d-. (18)

Substitution of stresses in terms of midplane strains using relations (8) and (4), the integrals
of eqns (18) lead to the following expressions for interlaminar shear stresses

& 320, 220
fl"_. zah, = Z {Q” <Il~v —--.—‘-.- + [-[4 0:\‘_2)

i}

I

er.'I.':hL

v (m, 50 a%0r
Q‘z :0\'(7)' 40x a‘v
i (211 20, H (’:0 S 2%0* N pigtv
tQn 2 *0xdy Taxt T M axay Y ox?
; 20, a0
i a:()\' 820‘ 0 0# 620*
+0'% (H:‘({‘T'F H:(-,_‘_(.,‘ +H, 3, + H"a\-a )}
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L ‘ 620 620‘
L [ fa 2 — -
r_v:l.'-'l,_ = ZI {Q 12 (H' (?x a}' + HJ C.x 6}')

. 20 %0, Rl a°0%,
| Ha o= + 2H, = == +2Hi
+05 (H’ cy” +2H: cxcy +Hs cy° ot 5-\'5)')
,, é0, c-0y
+Q|3<H: s T H, Bx:)
L A N 1 S
+0'% (H:L’.\‘ﬁ)‘ + H, o +H, axer + H, s )} (19

in which, H,, H, and Q, have already been defined.

3. FINITE ELEMENT FORMULATION

In the standard finite clement technique, the total solution domain is discretized into
NE subdomains (clements) such that

NE

n(d) = Y n°(8) (20)

e~

where © and = are the total potential of the system and the element, respectively. The
clement potential can be expressed in terms of internal strain energy UT and the external
work done W for an clement “¢™ as

n(d) = U'— W~ @2n
in which & is the vector of unknown displacement variables in the problem and it is defined

by eqn (11). If the same interpolation function is used to define all the components of the
generalized displacement vector 8, we can write

NN
5=73 N3, 22)

= |
in which A, is the interpolating (shape) function associated with node 4, 8, the value of &
corresponding to node i and NN the number of nodes in an element.

The bending curvatures (y. x*) and the transverse shear strains (®, ®*) are written in
terms of the degrees of freedom 8 by making use of eqns (5) as follows :

{xx*} =0

®
{ m*} =23 (23)

Subscripts b and s refer to bending and shear, respectively, and matrices %, and %, are
defined as follows :
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"0 &éx 0 0 0
0 0 ¢&dvy 0 0
0 é&idy diix 0 0
=10 o 0 ¢éx 0
0 o0 0 0 &lév
) 0 /ey dex]
é/ex 1 0 0 0
2y 0 L 0 O
=10 00 3 o0f- es)
0 0 0 0 3

With the generalized displacement vector & known at all points within the element, the
generalized strain vectors at any point are determined with the aid of eqns (24) and (22) as
follows:

NN

NN
{xx*} = 6=, T NG = T #pb = My
i=l i=1

(D NN NN

(D*}= L o=, i; NJ, = ’; B0, = H4d (252)
where

Byo= LN, By=[HyiBwi.. .  Bym)

-%,,-"‘—'-S/’,N,. ‘ﬂs':[:}’lhi:”ls‘:"'awN:VK]
and

d'= 18, 04 ... 8 (25b)

For the elastostatic analysis, the internal strain cnergy of an element due to bending and
shear can be determined by integrating the products of moment stress-resultants and
bending curvatures, and shear stress-resultants and shear strains over the area of an element

l ’ M ] Q
oil el e
Implementing the stress resultants given by cqn (13} in the strain energy expression (26),
we obtain
= oz 2+ @nomzd ® b aa 27)
AT ES M SICR LR PR @7

Substitution of eqn (25a) for bending and shear strains into eqn (27) leads to the strain
energy expression in terms of the nodal displacements which is given as follows:

t
Ur=y f {d( B2, B ) +d (B, 2,B)d} dA. 28
A
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This can be written in a concise form as

Ur=1id X d 29
in which ™ is the stiffness matrix for an element “e” which includes bending and the
transverse shear effects and is given by

X = J (B, Do By + B DAB,) dA. (30)
4

The computation of the element stiffness matrix from eqn (30) is economized by explicit
multiplication of the #,, 2 and 4, matrices instead of carrying out the full matrix mul-
tiplication of the triple product. In addition, due to symmetry of the stifiness matrix, only
the blocks 4, lying on one side of the main diagonal are formed. The integral is evaluated
using the Gauss quadrature

I i
-1 J-1

g q |
X = Z. » lW,, W,| 5| 828, &1)

in which W, and W, arc weighting coefficients, g the number of numerical quadrature
points in each of the two directions (x and y) and | #] the determinant of the standard
Jacobian matrix. Subscripts i and j vary from | to a number of nodes per clement (NN).
Matrix 22 is defined by eqn (13) and matrices 4, and 4, are given by

By By,
w,:[ ] and # =[ ’]. 32)
4, R A

For the problem of bending of sandwich plates, the applied external forces may consist of
concentrated nodal loads £, each corresponding to nodal degrees of freedom, u distributed
load ¢ acting over the clement in the z-direction and a sinusoidal distributed load P,,, acting
over the element in the z-direction. The total external work done by these forces may be
expressed as follows:

W= d’F,_.+d’J {N,0,0,0,0,N,,0,0,0,0,N,,...,Nyy,0,0,0,0} (¢ + P,.)dA. (33)
A

The integral in eqn (33) is evaluated numerically using Gauss quadrature as follows:

& ¢
P=% Z. W, W,1.#1{N.0,0,0,0,N,.0,0,0,0,..., Nyy,0,0,0,0}'

dal bm

X . n
x {q-}- DPon SID Q%L sin ~%¥} 34)

in which a and b arc the plate dimensions ; x and y are the Gauss point coordinates and m
and #n are the usual harmonic numbers.

4. NUMERICAL EXAMPLES AND DISCUSSION

Validity of the finite element formulations of the higher-order theories is established
by comparing results for laminated and sandwich plate problems with those available in
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the form of exact, closed form and other finite element solutions. The element properties
in the isoparametric finite element formulation presented here are evaluated through Gauss
quadrature. The selective integration scheme, namely 3 x 3 for flexure and 2 x 2 for shear
contributions, has been employed. The geometrical and material properties for two different
composite plate problems are as follows.

Material |

Cy =0.999781; Ci3 = 0.262931

Ci;=C;, =0.231192; C,=0.266810

C,, =0.524886; Css = 0.159914

hy=001,h,=0.08, h; =001, a =0°¢g = I. (35)
Material 11
Face sheets
? =25; i): =0.5; %—‘ =0.2

E,=10% G;=G,; v,;=025
hy=hy=01lh oa=0, p,.=1
Core
E,=E =04x10*; G.=G, =06x10°
G,=0.16x10%; v, =025 #h,=08h
E,

vy = L' v,2; directions | and x arecoincident. (36)
“1

In both the examples that follow, the plate is square and simply supported along all
four edges. Except for the convergence study the plate is discretized with four, 9 noded
quadrilateral elements in a quarter plate. The finite element evaluations of stresses are at
the nearest Gauss points. The deflection and stresses presented here are nondimensionalized
using the following multipliers

1001°E, h? h 1 C,, (core)
mo=-——"; m= 5, My=——; My=-, Ms=—7—", 37
Pmntt Pt - q hq
Superscripts “e™ and *¢” used in Tables 1-8 represent stress predictions from equilibrium
and constitutive relations, respectively. The two examples considered are described below.

4.1. Example | : symmetric laminated plate under uniform transverse pressure

This example is selected from Srinivas and Rao (1970). The set of material and
geometrical propertics given by relations (35) are used. The full (6 x 6) material stiffness
matrix given in Srinivas and Rao (1970) is reduced (5 x 5) to suit the present theorics, by
assuming o. = 0 and climinating ¢, from the stress-strain constitutive relations. The final
material stiffness coefficients adopted are given by relations (35). All the stiffness matrix
coeflicients for top and bottom laminae are some constant multiplier (modular ratio, R)
times the corresponding stiffness matrix coefficients for the middle lamina. The numerical
results showing convergence of deflection and stresses with mesh refinement are given in
Table 1. The convergence of transverse shear stress value with mesh refinement is shown
in Fig. 2. The transverse deflection and stresses at different locations in the thickness
direction and for various modular ratios (R = 5, 10, 15, 25, 50, 100) are given in Tables
2-5. The effect of varying modular ratio (R) on transverse deflection is shown in Fig. 3.
The effect of modular ratio on inplane normal stresses in the x- and y-directions at = = 0.05
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Table . Convergence of maximum stresses and displacement in a simply supported square laminated plate
(material l, a/h =10, R =9)

Mesh size
in quarter o xm, g, X my Toy XM, o xm, 5. xm, Wo X mg
Source plate (@2.a2.h2) (@2.a2.h2) (0.0.42) (0.4/2.0) (a/2,0.0) (a/2,a/2.0)
2x2 62.38 38.93 -33.22 3.089 2.541 256.13
HOST! Ix3 60.31 38.43 -34.08 3.652 2.874 256.47
4x4 60.54 38.57 —33.98 3.832 3.069 256.38
5xS§ 60.35 38.26 -34.41 3.954 3.179 256.43
2x2 61.03 38.78 -33.81 3.259 2.539 257.78
HOST? 3Ix3 60.65 38.58 —34.35 3.634 2.879 257.44
- 4x4 60.55 38.53 —-34.57 3.833 3.068 257.38
5x§ 60.52 38.52 —34.69 3.953 3.188 257.37
Srinivas and
Rao (1970) 60.353 38.491 — 4,3641 — 258.97
CLT — 6l.141 36.622 — 4.5899 — 216.94

is shown in Figs 4 and 3, respectively. The following general observations are made from
the results presented in Tables | — S and Figs 2-5.

(1) Deflection and inplane stresses can be accurately predicted without refining the
mesh, as the 2 x 2 mesh in a quarter plate gives sufficiently accurate results. The refined
mesh (5 x 5 in a quarter plate or more) is necessary for accurate prediction of transverse
shear stresses.

(2) Errorsin stress and deflection predictions increase with increasing value of modular
ratio (R). The differences in the first (FOST) and higher-order shear deformation theorics
(HOSTI, HOST?2) are very high for a large value of modular ratio, say R = 100.

(3) CPT and FOST underpredict deflections considerably. Deflections obtained using
higher-order theories agree well with exact solutions.

(4) Out of the two higher-order shear deformation theories presented, the one which
doces not satisfy free transverse shear stress conditions on top and bottom boundary planes
of the plate (HOST?2) is preferred as its agreement with exact solutions is superior than the
other one (HOSTH).

4 S[‘
EXACT ANALYSIS
4 Srinivas & Rao(1970)
1
My () 12 (BOTTOM OF TOP PLY)
13 (10P OF MIDOLE PLY)
<
A[h2e0080 T —(D—  —— . 2 240 ~o— HOST?
o ! ! o x HOST1
(=~74)
€ 4
x h3= 001 [0))
~
L’*‘
IJ sk Values within parenthesis are % Error
% Error « APProx. - Exact .00
Exact
(-25-3)
2
30 1, Y A ) J
0 S 10 15 20 25

——= NO. OF ELEMENTS IN A QUARTER PLATE

Fig. 2. Convergence of transverse shear stress with the mesh refinement for a simply supported
square laminated plate under uniform transverse load (a/h = 10).

SAS 24:12-G



Table 2. Maximum stresses and displacement in a simply supported square laminated plate (material I, a/h = 10, R = 5)

G, X, O X, G 3 XN, g, Xy 0,3 %X m, G,y X my . xm, . xmy ayxm, Wy X Mg
(@2, ai2, hf2) (@2, a2, 310) (a2, a/2, 4h/10)  (a/2, a2, B2y (a2, a:2, 4h:10) (0/2, a2, 4h/10) (0, a/2, 4h{10) {0, a/2,0) (0, af2, —4h/10)  (af2, 4f2, 0)
Source in face sheet in core in face sheet in core
HOSTI 62.38 46.91 9.382 38.93 30.33 6.065 2.566 3.089 2.566 256.13
(3.36) 0.62) (0.45) (1.14) 0.77) (—-1.56) (—31.0) (~29.2) (—21.5) (—L1)
HOST? 61.03 47.32 9.463 38.78 30.42 6.083 2.422 3.259 2.422 25718
- (1.12) (1.49) (1.32) (0.75) (1.07) (—1.27) (—34.9) (—25.3) (—-259) (—0.46)
FOST 61.87 49.50 9.899 36.65 29.32 5.864 2.444 3.313 2.444 236.10
(2.51) 6.17) (5.99) {(—4.78) {—2.58) {—4.82) {—34.29) (—24.1) {~25.2) {(—8.83)
S,{‘:;"&;gg;’ 60.353 46.623 9.340 18.491 30.097 6.161 37194 4.3641 3.2675 258.97
CLT 61.141 48.913 9.783 36.622 29.297 5.860 3.3860 4.5899 3.3860 216.94
(1.31) (4.91) (4.79) (—4.86) (~2.66) (—4.89) (—8.96) (5.17) (3.63) (—16.23)
Table 3. Maximum stresses und displacement in a simply supporied square laminated plate (material I, a/h = 10, R = 10)
O, X, 0. %Xm, Gy XMy o, xm, g, xm, a,,xnm, =, xm, ™ xmy Xy Wo X Mg
(a2, w2, h2) (a2, a2, 4h10) (a2, a2, 4hj10) (02, a2, h72) (a2, a2, 4h10) (a:2, a:2, 4h/10) (0, a/2, 4h/10) {0, a/2, 0) (0, a2, —4h/10) (a2, a/2, 0}
Source in face sheet in core in face sheet in core
HOSTI1 64.65 5131 5.131 42.83 3397 3.397 2.587 3.147 2.587 152.33
(—~1.04) (5.02) (4.65) (—1.69) (1.67) (-2949) (—34.1) (—23.2) (—26.4) (—4.42)
HOST? 66.23 50.00 5.000 43.78 33.81 3.381 2.629 3.073 2.629 156.18
- (L.37) (2.3 (1.98) (0.49) (1.19) (—34) (—33.1) (—25.0 (—25.2) (—2.01)
FOST 67.80 54.24 5.424 40.10 32.08 3.208 2.676 3.152 2.676 131.095
(3.78) (11.02) (10.63) {—7.96) (~3.99) {—-8.34) {(—31.9) (—23.0} (—239) (—17.7%)
Sl{:‘;“(‘:;;g;' 65.332 48,857 4.903 43.566 33.413 3.500 3.9285 4.0959 3.5154 159.38
CLT 66.947 53.557 5.356 40.099 32.079 3.208 3.7075 4.3666 3.7075 118.77
(2.47) (9.62) 9.24) (—17.96) {(—3.99) (—8.34) (—5.63) (6.61) {5.46) (—25.48)

8:31

INYY ‘L Pu® vaanvd ‘N ‘€



Tuble 4. Maximum stresses and displacement in a simply supported square laminated plate (material I, a/h = 10, R = 15)

g xm, o Xy, gxm, O, XM, o, % my oy xmy Ty xmy axmy, v xm, Wy XMy
(a/2, ai2, W2y (@/2, /2, 3000) (@)2, 02, 40108 (@2, a2 h2) (@2 a2, 4 10) (a2, /2, 4h/10) (0, a/2, 4h/10) (0, a/2,0) (0, a/2, —4hJ10}  (uf2, 4/2,0)
Source in face shect in core in face sheet in core
HOST1 66.62 5197 3.465 4492 3544 2.361 2.691 3.035 2.691 110.43
(—0.25) (7.60) (7.01) {(—~3.24) (1.30) (—~5.33) (—31.98) (—23.43) (—~24.77) (—9.28)
HOST? 67.88 49.94 3.329 46.45 35.36 2.357 2.693 2.989 2.693 117.14
- (1.64} (3.40) (2.8 (0.06) (1.16} (—~5.49) (—31.92) (—24.59) {(~24.71) {~3.76)
FOST 70.04 56.03 3.735 4039 3311 2.208 2.764 3.091 2,764 90.85
{(4.837) {16.00) (15.35) {—10.84) {—35.28) {(—11.47) {—30.13) {—22.02) (~22.72} {~25.36)
Srinivas and
Rao (1970) 66.787 48.299 3.238 46.424 34.955 2494 3.9559 3.9638 3.5768 121.72
CLT 69.135 55.308 3.687 41.410 33.128 2.209 3.8287 4.2828 3.8287 81.768
(3.52) (14.51) (13.87) (— 10.80) (—5.23) {—11.43) (—3.22) (8.04) (7.04) (—32.82)

Table 5. Maximum stresses and displacement in a simply supported square laminated plate (material 1, a/h = 10)

ayXm, gy xm, G,y XMy Gy xmy, g,y xm, o X0y T Xmy Wy XM,
R O XM, (a2, a/2, $h/10) (a/2, a/2, AR 10) (a2, ai2, WD) (a2, a2, 4hj10) (w2, /2, 4h/10) (0, a/2, 4h/10) 0, af2,0) {al2, af2,0)

Source (a2, al2, hidy in face sheet in core in face sheet in core

HOSTI 66,66 53.03 2 46.64 3706 1.482 2.744 2973 72.748
HOST2 25 08,89 48,27 1.934 49 .58 37.03 |.481 2.726 2.497 82.86
FOsT 71.94 57.55 2.302 4249 31399 1.36 2.838 3.040 56.331
HOST! 67.37 52,15 1.055 48.54 38.39 0.7678 2. 791 2.898 0873
HOST? 50 69.14 43.57 0.8714 55.04 38.89 0.7779 2.708 2,782 53.301
FOST 73.44 58.75 1.175 43.35 34.68 0.6935 2.897 3.000 28.904
HOSTI 67.30 52.57 0.5257 49.54 39.33 0.3933 2.808 2.861 21.166
HOST2 100 69.18 3715 0.3715 60.63 40.15 0.4015 2,650 2.677 34.521
FOST 74.22 59.37 0.5937 43.79 3503 0.3503 2927 2979 14.647
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Table 6. Maximum stresses and displacement in a simply supported square sandwich plate (material 11, a/h = 4)

a XM, O, XM, G, X M, T, XM, . xm; v, xmy T, xm, 0, xm, Wy X m,
Source (a/2, a/2, b2y  (a/2, as2, 3h/10)  (a/2, a)2, h)2) (0,0, 2) 0,a/2,0) (0, a/2, 0) (a/2,0,0) (a/2,0,0) (af2, a/2,0)
HOST! 1.2470 0.2416 0.2338 —-0.1343 0.2245 0.2382 0.08653 0.1132 0.6947
(—19.9) (—9.9) (—6.5) {(—6.1) (-19.3)
HOST? 1.5230 -0.0120 0.2414 —0.1419 0.2200 0.2750 0.08898 01137 0.7160
- (-2 (—-1.0) (—1.3) (—-19) (—17.0)
FOST 0.9056 0.7244 0.1578 -0.0912 0.2505 0.0995 0.06603 0.0436 0.4755
(—41.8) (—39.2) (—36.5) (4.8) (—38.4)
Pagano (1970) 1.556 —0.2330 0.2595 —0.1437 0.23%¢ — 0.1072 e -
Reddy and Chao (1981)>—FEM 0.8650 — 0.1517 -0.0878 — 0.0994 -_— 0.1740 0.4761
Reddy and Chao (1981)»—CFS 0.8670 — 0.1520 -0.0877 — 0.0993 — 0.1740 0.4767
CLT 1.097 0.878 0.0543 —0.0433 0.324 _ 0.0295 . .
(~29.5) (—=79.1) (—69.9) (35.6) (—72.5)
Table 7. Maximum stresses and displacement in a simply supported square sandwich plate (material 11, a/h = 10)
a, xm, o, X my o, xm, T, XN, o, xm; 5, xmy T, X My T, X m, wexm,
Source (a;i2, af2, hj2)  (a/2, u/2, $h/10)  (a/2, aj2, h;2) (0,0, 4;2) ©0,4a/2,0) (0, a/2,0) (a/2,0,0) (a/2,0,0) (a/2, /2, 0)
HOST! 1.10 0.7445 0.1017 -0.0666 0.2700 0.284! 0.04366 0.05593 0.2023
(-3.7) (18.6) (—-79) {(—58) (—10.0) (—11.2)
HOST? 1.166 0.6878 0.1052 -0.0692 0.2685 0.3400 0.04462 0.05642 0.2087
- (1.1) (9.5) (—-4.7) (-21) (—10.5) (—15.3)
FOST 1.062 0.8495 0.08057 —0.05532 0.2779 0.1112 0.03636 0.02384 0.1557
(—19) (35.3) (—21.0) (—21.8) (-74) (—31.0)
Pagano (1970) 1153 0.628 0.1104 -0.0707 0.3000 — 0.05270 e —
Reddy and Chao (1981)—FEM 1.015 e 00774 —0.0535 — 0.1112 — 0.095 0.1558
Reddy and Chao (1981)—CFS 1.017 e 0.0776 -0.0533 —_ 0.1110 —_ 0.095 0.1560
CLT 1.097 0.878 0.0543 —0.0433 0.324 _ 0.0295 _ o
(—4.9) (39.8) (—50.8) (—38.8) (8.0) (—44.0)
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Table 8. Maximum stresses and displacement in a simply supported square sandwich plate (material I, a/h = 100)

o, xm; o, xm, a, xm, T, XM, 5, Xy 5. x my, 5. xm, T, xm; Wo X,y
Source (@2, a/2, h/2)  (a/2, /2, 3h110) (a2, a/2, bf2) (0,0, h2) (0, 42, 0) (0, 4/2,0) (aj2,0,0) {4/2,0,0) (af2, a2, 0)
HOSTI 1.108 0.8852 0.0554 ~0.0340 0.2880 0.3001 0.02703 0.03362 0.0891
(0.9) (1.2) (0.7) 0.7) (—1L1) (—9.0)
HOST?2 1.109 0.8847 0.0554 —0.0440 0.2880 0.3627 0.02704 0.03322 0.0891
- (1.0 (LY (0.7) 0.7) (—1L.1) (—-92.0)
FOST 1.104 0.8836 0.0546 —0.0435 0.2875 0.1152 0.02695 0.01767 0.0883
0.5) {1.0) (-0.7) (—0.5) (—1L1.3) (—9.3)
Pagano (1970) 1.098 0.875 0.0550 —0.0437 0.3240 —_ 0.02970 — —
Reddy and Chao (1981)—FEM 1.063 —— 0.0530 —0.0421 — 0.1158 — 0.072 0.0882
Reddy and Chao (1981)—CFS 1.067 — 0.0531 —0.0420 — 0.1149 — 0.069 0.0885
CLT 1.097 0.878 0.0543 —0.0433 0.3240 _ 0.02950 . -
(-0.1) (0.3) {—-1.3) {—09) (L.0) (—0.7)
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Fig. 3. Effect of modular ratie {top or bottom/middic) on maximum transverse deflection for a
simply supported, symmetrically laminated, square plate under uniform transverse load {a/k = 10).
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Fig. 4. Effect of modular ratio (top or bottom/middle) on maximum inplane normal stress (at level
{ in x-direction) for a simply supported, symmetrically luminated square plate under uniform
transverse load (a/h = 10).
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Fig. 5. Effect of modular ratio (top or bottom/middle} on maximum inplane normal stress (at level
1 in y-direction) for a simply supported, symmetrically laminated square plate under uniform
teansverse load (a/h = 10).

4.2. Example 2: sandwich plate under sinusoidal distributed load

This example is selected from Pagano (1970). The properties given by relations (36)
arc used for the analysis. The clastic propertics given by Pagano (1970) are modified
accordingly by introducing therein the assumption of o, = 0, The results for deflection and
stresses with percentage errors specificd within parentheses for ¢/h =4, 10 and 100 are
presented in Tables 6-8, respectively. The effect of plate side-to-thickness ratio on transverse
deflection is shown in Fig. 6. The variation of inplane displacement along the x-direction
(u)} through the plate thickness is shown in Fig. 7. The effect of plate side-to-thickness ratio
on transverse shear stresses (r,.) and inplane normal stresses (o) are shown in Figs 8 and

Q-7 1
o6k
X HOSTY
HOST 2
Ukl m——e FOST
b o FOST{CFS)
, Reddy & Chao (1981}
g 0%
lﬂ
x
} 034
o2
o »
1 i
30 100

e @

Fig. 6. Effect of plate side-to-thickness ratios on the transverse deflections for a simply supported
square sandwich plate under sinusoidal transverse load.
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Fig. 7. Variation of inplane displacement along x-axis for a simply supported square sandwich plate
(a/h = 4) under sinusoidal transverse load.
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Fig. 8. Effect of plate side-to-thickness ratios on the transverse shear stresses for a simply supported
square sandwich plate under sinusoidal transverse load.

9, respectively. The following observations are made from the results presented in Tables
6-8 and Figs 6-9.

(1) For thick (a/h = 4) and moderately thick («/h = 10) plates, the deflection and
stresses predicted by CPT and FOST are grossly in error.

(2) All the theories agree well with each other for thin plates (a/h = 100).

(3) The transverse cross-section warping phenomenon which will be predominant for
a thick sandwich plate is evident in the present higher-order theorics (Fig. 7).

(4) The first and the last observations made in Example | are true for this example
too.

5. CONCLUSIONS

The results from the higher-order two-dimensional plate theories developed here com-
pare well with three-dimensional elasticity solutions. The theories lead to realistic parabolic
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Fig. 9. Effect of plate side-to-thickness ratios on the inplane normal stresses for a simply supported
square sandwich plate under sinusoidal transverse load.

variation of transverse shear stresses through the plate thickness, thus they do not require
the use of shear correction cocflicients. The simplifying assumptions made in CPT and
FOST are reflected by high percentage error in the results of thick sandwich or laminated
plates with highly stiff facings. It is believed that the improved shear deformation theory
presented here is essential for reliable analyses of sandwich type laminated composite plates.
Finally, the general isoparametric finite element formulation of these theories presented can
be applied to analyse any practical plate structures.
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